Олимпиада начальной школы 2x2, 5 класс, 2010 год, 2 тур
дата проведения: 7 февраля 2010
Задача 5.
Числа от 1 до 9 расставлены по кругу, как показано на рисунке.

Можно сколько угодно раз менять местами любые два из них, которые дают одинаковый остаток при делении на 3. Можно ли в итоге получить расстановку этих чисел по порядку?
Ответ на Задачу 5.
Войдите или Зарегистрируйтесь, чтобы видеть ответы.