<< к заданиям
Весенний математический Турнир Мёбиуса, 5 класс, 2019 год, первая лига, 2 тур
дата проведения: 19 февраля 2019

Задача 2.

В классе 24 девочки и 25 мальчиков. На 23 февраля каждая девочка послала несколько смс-сообщений мальчикам с поздравлением, при этом каждая девочка поздравила менее половины мальчиков, но все девочки послали одно и то же количество сообщений. Докажите, что найдутся 2 мальчика, которые получили одно и то же количество поздравлений.


Ответ на Задачу 2.

Мальчик не может получить более 24 сообщений, так как девочек всего 24. Будем решать от противного, пусть все мальчики получили попарно различное число сообщений, упорядочим мальчиков по возрастанию числа полученных сообщений. Первый в этом ряду получит 0 сообщений, второй — 1 сообщение, . . . , 25-й мальчик получит 24 сообщения. Сколько всего сообщений он получат? 0 + 1 + 2 + . . . + 24 = 300. Сколько же сообщений могут отправить девочки? Поскольку каждая поздравила менее половины мальчиков, то есть не более 12; тогда девочками отправлено не более 24 · 12 = 288 сообщений, что меньше 300. Противоречие.