<< к заданиям
Весенний математический Турнир Мёбиуса, 5 класс, 2019 год, первая лига, 3 тур
дата проведения: 20 февраля 2019

Задача 3.

Дана доска 7 × 7. В середине доски стоит фишка. Костя и Никита играют в игру, по очереди передвигают фишку в соседнюю по стороне клетку. Но нельзя сразу делать ход, противоположный ходу соперника, то есть, если соперник сходил вниз, то сразу после этого хода нельзя ходить вверх, если соперник ходил влево, нельзя сразу после этого хода ходить вправо и т.д. Выигрывает тот, кто первым поставит фишку в клетку, в которой она уже была. Начинает Костя. Кто может всегда выигрывать в этой игре и как он должен для этого играть?


Ответ на Задачу 3.

Выигрывает второй. Допустим первый ход был вверх, тогда нужно сходить вправо. Противник не может пойти вниз, так как соперник тут же выиграет, ему приходится ходить опять вверх. Так будет продолжаться до тех пор, пока фишка не окажется в угловой клетки, из которой первому игроку придётся по правилам сделать один возможный ход (вниз), при том проигрышный.