<< к заданиям
Всероссийская олимпиада школьников по математике, 10 класс, 2016 год
дата проведения: 10 октября 2016 - 16 октября 2016

Задача 6.

Петя показал Васе 37 внешне одинаковых карточек, выложенных в ряд. Он сказал, что на закрытых сторонах карточек записаны все числа от 1 до 37 (каждое по одному разу) так, что число на любой карточке начиная со второй является делителем суммы чисел, написанных на всех предшествующих карточках. Затем Петя показал Васе, что на первой карточке написано число 37, а на второй — число 1. Вася сказал, что он тогда знает, какое число написано на третьей карточке. Какое?


Ответ на Задачу 6.

Ответ: 2.

Решение:

Сумма всех чисел, кроме последнего, делится на последнее число, значит, сумма всех чисел также делится на последнее число. Сумма всех чисел от 1 до 37 равна 19 ⋅ 37. Значит, последнее число равно 1, 19 или 37. Так как 1 и 37 стоят на первом и втором местах, последнее число — 19. Третье число — делитель числа 37 + 1 = 38, то есть оно равно 1, 2 или 19. Мы знаем, что числа 1 и 19 расположены не на третьем месте, поэтому на третьем месте стоит число 2.

Замечание: Приводить пример, как расположены числа на остальных карточках (или доказывать его существование), не требуется.